

Development of samplers for aerosol fractions deposited in two regions of the respiratory tract - the gas-exchange region and the posterior head airways

Göran Lidén

Stockholm University, Stockholm, Sweden

aces. Department of Environmental Science and Analytical Chemistry

AirMon 12 June 2017, Dresden, Germany

Rationale

Measurement of welders' exposure to manganese (Mn)

- Mn is neurotoxic
 - Accumulates in mainly in Basal Ganglia in the brain
 - Enters (mainly) across Blood-Brain-Barrier
- Only two important deposition regions for exposure to occupational airborne Mn-containing particles
 - Gas-Exchange region followed by dissolution + transfer to blood
 - Macrophages
 - Extra-cellular liquid
 - Olfactory mucosa at top of nose
 - Transfer to olfactory bulb via olfactory nerve
 - Further in-Brain transport to Basal Ganglia possible
 - Mn deposited in other regions end up in Gastro-Intestinal tract
 - Uptake of Mn in GI tract extremely well regulated
 - Mn is an essential element
- **aces.** Department of Environmental Science and Analytical Chemistry

Deposition Efficiency

EN ISO13138:2012 Air Quality — Sampling conventions for airborne particle deposition *in the human respiratory system* based on ICRP Report Gas-Exchange (GE) region — Workload & Normal/Mouth breathing

Deposition Efficiency

EN ISO13138:2012 *Air Quality — Sampling conventions for airborne particle deposition*

in the human respiratory system based on ICRP Report Extra-Thoracic (ET1+ET2) regions — Workload & Normal/Mouth breathing

Principles for sampler design

- Small and light sampler
 - Airflow 1-2 LPM
 - Similar as possible for both fractions
- Use available filters, diffusive screens, etc.
 - 13 & 25 mm
- Collection on two stages
 - Aerodynamic
 - Impactor
 - Diffusive
 - Nylon mesh nets
 - Minimal deposition due to diffusion on aerodynamic stage, and opposite
 - Separate large particles from diffusive (second) stage by protective impactor

Design GE sampler

Design of samplers (1)

- Both samplers almost identical
 - Q=1.2 LPM
- Apart from
 - Entrance sections
 - Incl. penetration impactor for GE sampler
 - Deposition impactor and tube to collection substrate
 - Different cut-sizes between GE & ET samplers

Design of samplers (2)

- Penetration impactor (aerodynamic collection stage)
 - Uni-nozzle
 - Designed to have a non-sharp separation curve $S/W\approx 17$
- Deposition impactor (aerodynamic collection stage)
 - Uni-nozzle
 - Designed to have a non-sharp separation curve $S/W \approx 17$
 - Collection substrate: oil-soaked filter
- Protective impactor
 - Multi-nozzle
 - 7*Ø0.30 mm
 - Collection substrate: high-vacuum grease (sample discarded)
- Mesh nets
 - Combination of two different nylon nets
 - 4*NY41 + 1*NY20
- **aces.** Department of Environmental Science and Analytical Chemistry

Aerodynamic collection stage (1) Sampler collection stage I Stockholm

Diffusive collection stage (1) Sampler collection stage II Stockholm

Protective impactor (1) Aerodynamic collection

Summary

- Neurotoxic Mn mainly deposits in Gas-Exchange (GE) and Extra-Thoracic 2 (ET2) regions
- Designed and tested two samplers for airborne particles depositing in these regions
 - Consists of two collection stages
 - Aerodynamic and diffusive collection
 - Protective impactor to prevent aerodynamic deposition in diffusive mesh nets
- Aerodynamic separation GE_{ae} & 1.5*ET2_{ae}
 - Mainly qualitative agreement between sampler separation curve and sampling convention
- Diffusive separation GE_{de} & 7*ET2_{de}
 - Good agreement between sampler separation curve and sampling convention
- Thanks to
 - A. Gudmundsson (EAT/Design/LTH/LU), J. Waher & L. Bäcklin (ACES/SU) & D. Bartley (exNIOSH)
- **aces.** Department of Environmental Science and Analytical Chemistry

